THE GUY BEING A SPIDER IN THE BACK THOUGH


This is at least the third time I’ve reblogged this and I’m not sorry


THE GUY BEING A SPIDER IN THE BACK THOUGH

This is at least the third time I’ve reblogged this and I’m not sorry

(via candidlycara)

neurosciencestuff:

(Image caption: A peptide responsible for cell communication in the brain, Vip (green) is reduced in the brains of mice that have little or no Lhx1 (right). Credit: Salk Institute for Biological Studies)

Single gene controls jet lag

Scientists at the Salk Institute for Biological Studies have identified a gene that regulates sleep and wake rhythms.

The discovery of the role of this gene, called Lhx1, provides scientists with a potential therapeutic target to help night-shift workers or jet lagged travelers adjust to time differences more quickly. The results, published in eLife, can point to treatment strategies for sleep problems caused by a variety of disorders.

“It’s possible that the severity of many dementias comes from sleep disturbances,” says Satchidananda Panda, a Salk associate professor who led the research team. “If we can restore normal sleep, we can address half of the problem.”

Every cell in the body has a “clock” – an abundance of proteins that dip or rise rhythmically over approximately 24 hours. The master clock responsible for establishing these cyclic circadian rhythms and keeping all the body’s cells in sync is the suprachiasmatic nucleus (SCN), a small, densely packed region of about 20,000 neurons housed in the brain’s hypothalamus.

More so than in other areas of the brain, the SCN’s neurons are in close and constant communication with one another. This close interaction, combined with exposure to light and darkness through vision circuits, keeps this master clock in sync and allows people to stay on essentially the same schedule every day. The tight coupling of these cells also helps make them collectively resistant to change. Exposure to light resets less than half of the SCN cells, resulting in long periods of jet lag.

In the new study, researchers disrupted the light-dark cycles in mice and compared changes in the expression of thousands of genes in the SCN with other mouse tissues. They identified 213 gene expression changes that were unique to the SCN and narrowed in on 13 of these that coded for molecules that turn on and off other genes. Of those, only one was suppressed in response to light: Lhx1.

“No one had ever imagined that Lhx1 might be so intricately involved in SCN function,” says Shubhroz Gill, a postdoctoral researcher and co-first author of the paper. Lhx1 is known for its role in neural development: it’s so important, that mice without the gene do not survive. But this is the first time it has been identified as a master regulator of light-dark cycle genes.

By recording electrical activity in the SCN of animals with reduced amounts of the Lhx1 protein, the researchers saw that the SCN neurons weren’t in sync with one another, despite appearing rhythmic individually.

“It was all about communication–the neurons were not talking to each other without this molecule,” says Ludovic Mure, a postdoctoral researcher and an author on the paper. A next step in the work will be to understand exactly how Lhx1 affects the expression of genes that creates this synchronicity.

Studying a mouse version of jet lag–an 8-hour shift in their day-night cycle–the scientists found that those with little or no Lhx1 readjusted much faster to the shift than normal mice. This suggests that because these neurons are less in sync with one another, they are more easily able to shift to a new schedule, though it is difficult for them to maintain that schedule, Panda says.

These mice also exhibited reduced activity of certain genes, including one that creates vasoactive intestinal peptide or Vip, a molecule that has important roles in development and as a hormone in the intestine and blood. In the brain, Vip affects cell communication, but nobody had known that Lhx1 regulated it until now, Panda says. Interestingly, the team also found that adding Vip restored cell synchrony in the SCN.

“This approach helped us to close that knowledge gap and show that Vip is a very important protein, at least for SCN,” Panda says. “It can compensate for the loss of Lhx1.”

On the other hand, cutting back on Vip could be another way to treat jet lag. Vip could be an even easier drug target compared with Lhx1 because Vip is secreted from cells rather than inside cells, Panda says. “If we find a drug that will block the Vip receptor or somehow break down Vip, then maybe that will help us reset the clock much faster,” he adds.

The new results take the group a step closer to their goal of creating cell regenerative therapies that restore the SCN and ameliorate sleep problems. The scientists have made their gene expression data available through a searchable web interface at http://scn.salk.edu, giving other researchers a handy way to explore the effect of light and dark in genes in the SCN and other tissues.

markieramone:

han-shot—first:

at level two, there’s no more cursing. 

(via shaolin-rogue)

390,583 plays 390,583 plays
The Neighbourhood

Sweater Weather (Acoustic) - The Neighbourhood

And if I may just take your breath away
I don’t mind if there’s not much to say

(via barefootbicyclist)

heyfunniest:

BEARD GAME TOO STRONG

(via the-absolute-best-posts)

spoopdogg:

seventoinfinity:

discuntinq:

Using y = mx + b to measure the slope of that ass

Mathematically incorrect. Unless the ass was linear, but that’s biologically incorrect. You’d probably wanna use something like y=ax^2+bx+c because the ass is a second degree polynomial curve. 

did you major in booty math

(via mylifeisabsurd)

hold-on-till-day:

I found my senior quote.

(via the-absolute-best-posts)

neuromorphogenesis:

New High-Tech Lab Records the Brain and Body in Action

How does an autistic child take in information when he sits in a classroom abuzz with social activity? How long does it take someone with multiple sclerosis, which slows activity in the brain, to process the light bouncing off the windshield while she drives?

Until recently, the answers to basic questions of how diseases affect the brain – much less the ways to treat them – were lost to the limitations on how scientists could study brain function under real-world conditions. Most technology immobilized subjects inside big, noisy machines or tethered them to computers that made it impossible to simulate what it’s really like to live and interact in a complex world.

But now UC San Francisco neuroscientist Adam Gazzaley, MD, PhD, is hoping to paint a fuller picture of what is happening in the minds and bodies of those suffering from brain disease with his new lab, Neuroscape, which bridges the worlds of neuroscience and high-tech.

In the Neuroscape lab, wireless and mobile technologies set research participants free to move around and interact inside 3-D environments, while scientists make functional recordings with an array of technologies. Gazzaley hopes this will bring his field closer to understanding how complex neurological and psychiatric diseases really work and help doctors like him repurpose technologies built for fitness or fun into targeted therapies for their patients.

“I want us to have a platform that enables us to be more creative and aggressive in thinking how software and hardware can be a new medicine to improve brain health,” said Gazzaley, an associate professor of neurology, physiology and psychiatry and director of the UCSF Neuroscience Imaging Center. “Often, high-tech innovations take a decade to move beyond the entertainment industry and reach science and medicine. That needs to change.”

As a demonstration of what Neuroscape can do, Gazzaley’s team created new imaging technology that he calls GlassBrain, in collaboration with the Swartz Center at UC San Diego and Nvidia, which makes high-end computational computer chips. GlassBrain creates vivid, color visualizations of the structures of the brain and the white matter that connects them, as they pulse with electrical activity in real time.

These brain waves are recorded through electroencephalography (EEG), which measures electrical potentials on the scalp. Ordinary EEG recordings look like wavy horizontal lines, but GlassBrain turns the data into bursts of rhythmic activity that speed along golden spaghetti-like connections threading through a glowing, multi-colored glass-like image of a brain. Gazzaley is now looking at how to feed this information back to his subjects, for example by using the data from real-time EEG to make video games that adapt as people play them to selectively challenge weak brain processes. 

Gazzaley has already used the technology to image the brain of former Grateful Dead drummer Mickey Hart as he plays a hypnotic, electronic beat on a Roland digital percussion device with NeuroDrummer, a game the Gazzaley Lab is designing to enhance brain function through rhythmic training. Hart, whose brain is healthy, is collaborating with Gazzaley to develop the game and performed on NeuroDrummer while immersed in virtual reality on an Oculus Rift at the Neuroscape lab opening on March 5.

The Neuroscape lab will be available to all UCSF researchers who study the brain. And Gazzaley ultimately hopes it will aid in the development of therapies to treat diseases as various as Alzheimer’s, post-traumatic stress disorder, attention deficit and hyperactivity disorder, schizophrenia, autism, depression and multiple sclerosis.